Representations of degenerate Hermite polynomials

نویسندگان

چکیده

The study on degenerate versions of some special numbers and polynomials, which began with Carlitz's pioneering work, has regained recent interests mathematicians. Motivated by this, we introduce Hermite polynomials as a version the ordinary polynomials. Recently, introduced was ?-umbral calculus where usual exponential function appearing in generating Sheffer sequence is replaced function. Then, among other things, using formula about expressing one ?-Sheffer polynomial terms another represent higher-order Bernoulli, Euler, Frobenius-Euler vice versa.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Degenerate Hermite Poly–bernoulli Numbers and Polynomials

In this paper, we introduce a new class of degenerate Hermite poly-Bernoulli polynomials and give some identities of these polynomials related to the Stirling numbers of the second kind. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of d...

متن کامل

Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$

Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...

متن کامل

Integral representations for multiple Hermite and multiple Laguerre polynomials

converges. Random matrices with external source were introduced and studied by Brézin and Hikami [7, 8, 9, 10, 11], and P. Zinn-Justin [18, 19]. In what follows, we assume that A hasm distinct eigenvalues a1, . . . , am of multiplicities n1, . . . , nm. We consider m fixed and use multi-index notation ~n = (n1, . . . , nm) and |~n| = n1 + · · ·+ nm. The average characteristic polynomial P~n(x) ...

متن کامل

On Hermite-hermite Matrix Polynomials

In this paper the definition of Hermite-Hermite matrix polynomials is introduced starting from the Hermite matrix polynomials. An explicit representation, a matrix recurrence relation for the Hermite-Hermite matrix polynomials are given and differential equations satisfied by them is presented. A new expansion of the matrix exponential for a wide class of matrices in terms of Hermite-Hermite ma...

متن کامل

Quantum Hermite Interpolation Polynomials

Abstract. The concept of Lagrange and Hermite interpolation polynomials can be generalized. The spectral basis of idempotents and nilpotents of a factor ring of polynomials provides a powerful framework for the expression of Lagrange and Hermite interpolation in 1, 2 and higher dimensional spaces. We give a new definition of quantum Lagrange and Hermite interpolation polynomials which works on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2022

ISSN: ['1090-2074', '0196-8858']

DOI: https://doi.org/10.1016/j.aam.2022.102359